Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 501, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598057

RESUMO

BACKGROUND: Dendrocalamus strictus (Roxb.) Nees, generally referred to as 'Male bamboo,' is a globally prevalent and highly significant species of bamboo. It is a versatile species and possesses notable industrial significance. However, despite its numerous applications, the production of this plant is insufficient to fulfill the worldwide demand. The challenges that impede the dissemination of D. strictus encompass the unpredictable blooming pattern (30-70 years), low seed production, and limited seed viability. Therefore, tissue culture presents a reliable and effective option for the mass production of standardized planting material. METHODOLOGY AND RESULTS: This study investigated the effects of silver nanoparticles (AgNPs) at a concentration of 6.0 mg L- 1 in the Murashige and Skoog (MS) nutrient medium fortified with pre-optimized plant growth regulators (3.0 mg L- 1 6-benzylaminopurine + 0.5 mg L- 1 α-naphthalene acetic acid) on the induction of flowering in a controlled environment in D. strictus. The use of AgNPs in the media induced a maximum of 14 inflorescences per culture vessel, 9 flowers per inflorescence, and improved the performance of the micropropagated plantlets during acclimatization in the greenhouse and field. The ISSR and SCoT amplified polymorphic DNA analysis of the regenerants resulted in the formation of 49 bands (300 to 2000 bp size) and 36 scorable bands (350 to 2000 bp) respectively. All the PCR amplicons produced by SCoT and ISSR were monomorphic confirming the genetic uniformity of the tissue cultured plants of D. strictus with the mother plant. CONCLUSIONS: It can be inferred that the incorporation of AgNPs during the shoot proliferation phase has the potential to stimulate in vitro flowering in D. strictus. This finding could provide valuable insights into innovative strategies for enhancing crop productivity and genetic manipulation for accelerated breeding and agricultural advancement.


Assuntos
Nanopartículas Metálicas , Prata/farmacologia , Melhoramento Vegetal , Biomarcadores , Aclimatação
2.
Mol Biol Rep ; 50(6): 5165-5176, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119416

RESUMO

BACKGROUND: Genome editing technology has become one of the excellent tools for precise plant breeding to develop novel plant germplasm. The Tobacco mosaic virus (TMV) is the most prominent pathogen that infects several Solanaceae plants, such as tobacco, tomato, and capsicum, which requires critical host factors for infection and replication of its genomic RNA in the host. The Tobamovirus multiplication (TOM) genes, such as TOM1, TOM2A, TOM2B, and TOM3, are involved in the multiplication of Tobamoviruses. TOM1 is a transmembrane protein necessary for efficient TMV multiplication in several plant species. The TOM genes are crucial recessive resistance genes that act against the tobamoviruses in various plant species. METHODS AND RESULTS: The single guided RNA (sgRNA) was designed to target the first exon of the NtTOM1 gene and cloned into the pHSE401 vector. The pHSE401-NtTOM1 vector was introduced into Agrobacterium tumefaciens strain LBA4404 and then transformed into tobacco plants. The analysis on T0 transgenic plants showed the presence of the hptII and Cas9 transgenes. The sequence analysis of the NtTOM1 from T0 plants showed the indels. Genotypic evaluation of the NtTOM1 mutant lines displayed the stable inheritance of the mutations in the subsequent generations of tobacco plants. The NtTOM1 mutant lines successfully conferred resistance to TMV. CONCLUSIONS: CRISPR/Cas genome editing is a reliable tool for investigating gene function and precision breeding across different plant species, especially the species in the Solanaceae family.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Vírus do Mosaico do Tabaco/genética , Sistemas CRISPR-Cas/genética , Tobamovirus/genética , Plantas Geneticamente Modificadas/genética , RNA
3.
Int J Biol Macromol ; 219: 1261-1271, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36057300

RESUMO

Epigenetic changes are the heritable modifications in genes without altering DNA sequences. The epigenetic changes occur in the plant genomes to regulate gene expression patterns, which were used to regulate different biological processes, including coping various environmental stresses. These changes, including DNA methylation, non-coding RNA regulation, and histone modification, play a vital role in the transcription and translation processes to regulate gene expression. Gene engineering for the development of stress-tolerant crops via the DNA methylation pathway initially needs a proper selection of genes and its promoter. Manipulating epigenetics requires genetic engineering tools such as Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas). However, CRISPR/Cas9 mediated epigenetic editing refers to transcriptional reprogramming at the targeted sites using epigenetic enzymes fused with decatalytical Cas9 (dCas9). This review focused on the different epigenetic mechanisms in plants and their potential contribution to developing epigenetic tools. The dCas9 endonuclease tethered with transcriptional repressor or activator domain leads to CRISPR inhibitor (CRISPRi) or activator (CRISPRa) for regulating gene expression. The dCas9 has been successfully fused with other various effector domains for constructing epigenetic tools, including the DNA methyltransferase 3A (DNMT3A), or the DNA demethylase TET. Multiple efforts have been made to improve epigenome editing in plants. Initially, incorporating SunTag into the dCas9-EpiEffector complex was used as an epigenetic tool; demethylation of target loci with dCas9-SunTag-TET1 futher increased its efficiency. Additionally, SunTag could also be fused with the dCas9-DNMT3A complex to augment CpG methylation at a targeted loci.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Epigênese Genética/genética , RNA não Traduzido , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases de Dedos de Zinco/genética
4.
3 Biotech ; 12(9): 194, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35910289

RESUMO

A reliable and stable Agrobacterium-mediated genetic transformation system for Artemisia pallens has been developed using cell suspension cultures derived from cotyledon explants. Cotyledon, attached cotyledon, and compound leaves were found to be suitable for the induction of callus among five different types of explants tested. The yellow friable callus derived from attached cotyledon was used to initiate suspension cultures in Suspension Culture Medium (SCM) which was supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) at 2.0 mg L-1 and in combination with different concentrations of Zeatin (ZEA) at 0.25 mg L-1. Two different shock treatments, cold shock (at 4 ℃) for 20 min and heat shock (at 45 ℃) treatment for 5 min, heat shock treatment increased the transformation efficiency. The supplementation of Pluronic F-68 (0.05%) significantly enhanced the transformation efficiency of suspension cultures, whereas Silwet L-77 (0.05%) leads to more browning of the cells and reduced the transformation efficiency. The maximum GUS intensity was recorded with an optimal intensity of blue spots in the transformed cells. The highest GUS fluorometric activity measured was 879.4 ± 113.7 nmol 4MU/mg/min in transformed cell suspension cultures. The hygromycin-resistant calli showed intense blue color in GUS histochemical assay. The transgene integration into the plant genome was confirmed by polymerase chain reaction (PCR) using uidA specific primers in six hygromycin-resistant cell lines. The partial coding sequence of three candidate reference genes, i.e., ADP-ribosylation factor (Arf), ß-actin (Act), and ubiquitin (Ubi), and carotenoid biosynthesis pathway gene, i.e., Phytoene desaturase (Pds) were cloned, sequenced, and submitted to NCBI for the first time. The quantitative mRNA expression of the transgene (uidA) and internal ApPds gene were evaluated in transgenic callus lines. The present Agrobacterium-mediated genetic transformation protocol could help in better understanding of the metabolic pathways of this medicinally important plant and its genetic improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03251-x.

5.
Saudi J Biol Sci ; 29(6): 103292, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35540178

RESUMO

Tomato (Solanum lycopersicum L.) is an important vegetable and nutritious crop plant worldwide. They are rich sources of several indispensable compounds such as lycopene, minerals, vitamins, carotenoids, essential amino acids, and bioactive polyphenols. Plant regeneration and Agrobacterium-mediated genetic transformation system from different explants in various genotypes of tomato are necessary for genetic improvement. Among diverse plant growth regulator (PGR) combinations and concentrations tested, Zeatin (ZEA) at 2.0 mg l-1 in combination with 0.1 mg l-1 indole-3-acetic acid (IAA) generated the most shoots/explant from the cotyledon of Arka Vikas (36.48 shoots/explant) and PED (24.68 shoots/explant), respectively. The hypocotyl explant produced 28.76 shoots/explant in Arka Vikas and 19.44 shoots/explant in PED. In contrast, leaf explant induced 23.54 shoots/explant in Arka Vikas and 17.64 shoots/explant in PED. The obtained multiple shoot buds from three explant types were elongated on a medium fortified with Gibberellic acid (GA3) (1.0 mg l-1), IAA (0.5 mg l-1), and ZEA (0.5 mg l-1) in both the cultivars. The rooting was observed on a medium amended with 0.5 mg l-1 indole 3-butyric acid (IBA). The transformation efficiency was significantly improved by optimizing the pre-culture of explants, co-cultivation duration, bacterial density and infection time, and acetosyringone concentration. The presence of transgenes in the plant genome was validated using different methods like histochemical GUS assay, Polymerase Chain Reaction (PCR), and Southern blotting. The transformation efficiency was 42.8% in PED and 64.6% in Arka Vikas. A highly repeatable plant regeneration protocol was established by manipulating various plant growth regulators (PGRs) in two tomato cultivars (Arka Vikas and PED). The Agrobacterium-mediated transformation method was optimized using different explants like cotyledon, hypocotyl, and leaf of two tomato genotypes. The present study could be favourable to transferring desirable traits and precise genome editing techniques to develop superior tomato genotypes.

6.
J Genet Eng Biotechnol ; 18(1): 25, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638190

RESUMO

BACKGROUND: CRISPR/Cas9 genome editing technology is a DNA manipulation tool for trait improvement. This technology has been demonstrated and successfully applied to edit the genome in various species of plants. The delivery of CRISPR/Cas9 components within rigid plant cells is very crucial for high editing efficiency. Here, we insight the strengths and weaknesses of each method of delivery. MAIN TEXT: The mutation efficiency of genome editing may vary and affected by different factors. Out of various factors, the delivery of CRISPR/Cas9 components into cells and genome is vital. The way of delivery defines whether the edited plant is transgenic or transgene-free. In many countries, the transgenic approach of improvement is a significant limitation in the regulatory approval of genetically modified crops. Gene editing provides an opportunity for generating transgene-free edited genome of the plant. Nevertheless, the mode of delivery of the CRISPR/Cas9 component is of crucial importance for genome modification in plants. Different delivery methods such as Agrobacterium-mediated, bombardment or biolistic method, floral-dip, and PEG-mediated protoplast are frequently applied to crops for efficient genome editing. CONCLUSION: We have reviewed different delivery methods with prons and cons for genome editing in plants. A novel nanoparticle and pollen magnetofection-mediated delivery systems which would be very useful in the near future. Further, the factors affecting editing efficiency, such as the promoter, transformation method, and selection pressure, are discussed in the present review.

7.
Front Plant Sci ; 11: 264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296449

RESUMO

Cpf1, an endonuclease of the class 2 CRISPR family, fills the gaps that were previously faced in the world of genome engineering tools, which include the TALEN, ZFN, and CRISPR/Cas9. Other simultaneously discovered nucleases were not able to carry out re-engineering at the same region due to the loss of a target site after first-time engineering. Cpf1 acts as a dual nuclease, functioning as an endoribonuclease to process crRNA and endodeoxyribonuclease to cleave target sequences and generate double-stranded breaks. Additionally, Cpf1 allows for multiplexed genome editing, as a single crRNA array transcript can target multiple loci in the genome. The CRISPR/Cpf1 system enables gene deletion, insertion, base editing, and locus tagging in monocot as well as in dicot plants with fewer off-target effects. This tool has been efficiently demonstrated into tobacco, rice, soybean, wheat, etc. This review covers the development and applications of Cpf1 mediated genome editing technology in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...